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Abstract—One of the major challenges in pattern recognition
problems is the feature extraction process which derives new
features from existing features, or directly from raw data in
order to reduce the cost of computation during the classification
process, while improving classifier efficiency. Most current feature
extraction techniques transform the original pattern vector into a
new vector with increased discrimination capability but lower di-
mensionality. This is conducted within a predefined feature space,
and thus, has limited searching power. Genetic programming
(GP) can generate new features from the original dataset without
prior knowledge of the probabilistic distribution. In this paper, a
GP-based approach is developed for feature extraction from raw
vibration data recorded from a rotating machine with six different
conditions. The created features are then used as the inputs to a
neural classifier for the identification of six bearing conditions.
Experimental results demonstrate the ability of GP to discover
autimatically the different bearing conditions using features
expressed in the form of nonlinear functions. Furthermore, four
sets of results—using GP extracted features with artificial neural
networks (ANN) and support vector machines (SVM), as well as
traditional features with ANN and SVM—have been obtained.
This GP-based approach is used for bearing fault classification
for the first time and exhibits superior searching power over
other techniques. Additionaly, it significantly reduces the time for
computation compared with genetic algorithm (GA), therefore,
makes a more practical realization of the solution.

Index Terms—Fault classification, feature generation, genetic
programming (GP), machine condition monitoring (MCM).

I. INTRODUCTION

MACHINE condition monitoring (MCM) is an area which
is gaining increasing importance in the manufacturing

industry. Maintenance costs can be reduced significantly by
monitoring health of machinery. Potentially disastrous faults
can be detected early, while enabling the implementation of
condition-based maintenance rather than periodic, or respon-
sive maintenance. Several conventional methods have been
used to analyze the vibration signal in order to extract effective
features for bearing fault detection. These include probabilistic
analysis [1], [2], frequency analysis [3], time-domain [4], and
finite-element analysis [1], [2].

Feature extraction is one of the most important factors in
pattern recognition problems. The process derives new features
from raw data in order to reduce the dimensionality of data
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presented to the classifier, while improving the classification
efficiency. The choice of features can greatly affect the per-
formance of classification. Any generated features will often
be refined to try to achieve the desired level of performance.
However, manually developing features can be very time-con-
suming and rely on the experience of the engineer. In many
problems, generated features should have the ability to identify
subtle, or complex relationships, within large datasets where
the mapping from data to class labels is often obscure, or
difficult for humans to identify. A variety of different machine
learning techniques have been applied to the problem of au-
tomated feature generation including neural networks [5], [6],
fuzzy systems [7], [8], and evolutionary algorithms [9], [10].

In recent years, the application of evolutionary learning algo-
rithms to pattern recognition problem has become increasingly
common. Evolution strategies [11], evolutionary programming
(EP) [12], genetic algorithms (GA) [13]–[16], or genetic pro-
gramming (GP) [17]–[22] have been used to solve complex
problems. For instance, Raymer et al. [15] shows that a hy-
brid of KNN classifier and genetic algorithm can considerably
improve the discrimination accuracy. GP was first introduced
by Koza [17], and has been proposed as a machine learning
method in different fields. In [18], the GP technique was used
to develop a decision support system for vehicle dispatching
considering a population of utility functions that evaluate can-
didate vehicles for servicing requests. GP was tested in six
medical diagnosis problems [19] and the results were compared
with those obtained by neural networks. In [20], the feasibility
of applying GP to multicategory pattern classification problem
was studied. Zhang et al. [21] applied GP for fault detection in
MCM field. However, in all the above applications [18]–[21],
GP was employed solely as a classifier based on manually
developed features. In [22], GP-based feature extraction was
used to improve the classification results and reduce the di-
mensionality of the data in the medical domain. GP exhibits
pseudo-intelligent behavior by deciding whether to perform
feature extraction or feature selection during the evolutionary
process. Unfortunately, the system is unable to sample ade-
quately the search space for high-dimensional problems and
the main disadvantage lies in its computational complexity.
Kotani et al. [23] performed feature extraction using GP with a
KNN classifier on one artificial task and one acoustic diagnosis
experiment with the conclusion that the GP is an effective
tool for the feature extraction task.

Some techniques for feature extraction have been studied for
MCM application to data. Genetic algorithm based feature se-
lection was carried out in [14], for the classification of bearing
faults using vibration signals. In [24], Chen et al. presented
a GA-based method to automatically generate symptom pa-
rameter functions from rolling bearing data for the diagnosis
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of machinery operating conditions. Experimental studies on
rolling bearings using a feature extraction method which is a
combination of wavelet and Fourier transformation are reported
in [25]. As far as the authors are aware, GP has not yet been
utilized for the purpose of feature generation in the field of
bearing fault classification.

In this paper, GP is applied to generate features suitable for
bearing fault classification in the area of MCM for the first
time. It has the capability to extract features from raw vibra-
tion data and uses these features to improve the classification
performance with the following advantages:

• All features within each generation are created automati-
cally, thus, avoiding human influence or bias.

• Instead of using classification results to determine the
fitness of a feature, usually requiring a large amount of
computation and time, a novel fast method is proposed
to evaluate the difference among classes and enhance
the distribution of each class from others based on the
well-known Fisher criterion.

• GP exhibits pseudo-intelligent behavior by deciding
whether to perform feature extraction or feature selection
during the evolutionary process, rather than the pure
selection of features from a large number of candidate
features using GA.

This paper is organized as follows. The data preparation using
vibration signals for condition monitoring is addressed in Sec-
tion II. The traditional feature extraction methods are presented
at Section III. GP–based feature generation model is described
in Section IV, while types of artificial neural network (ANN)
used for the classification task in this work are described in Sec-
tion V. Based on the model, a series of feature extraction exper-
iments for the classification of vibration signals are conducted
in Section VI, which also includes comparisons of classifica-
tion performance using extracted features by GP and traditional
methods. Section VII provides some discussions based on ex-
perimental results. Advantages and limitation of the GP-based
feature extraction method are concluded in Section VIII.

II. DATA PREPARATION

Rolling element bearings (see Fig. 1) are probably among the
most widely used rotating machine components. It is of prime
importance to be able to accurately detect the existence and
severity of faults in machinery in certain areas of industry, as
the machine may be safety or emergency-related in many cases.
The work presented in this paper is the automatic extraction of
features using GP and the employment of those features to solve
the problem of bearing conditions monitoring. The six bearing
conditions, each having their own distinguishing characteristics,
are as follows.

1) normal bearing (NO);
2) worn normal bearing (NW);
3) inner race fault (IR);
4) outer race fault (OR);
5) rolling element fault (RE);
6) cage fault (CA).

The NO is a brand new bearing, which has been run in, but in
otherwise perfect condition. The NW is in good condition, how-
ever, it has been running for some period of time and serves as
an example of a bearing that has seen some usage. The IR fault

Fig. 1. Typical roller bearing, showing different component parts.

was created by first removing the cage, moving the elements to
one side of the bearing, and then removing the inner race. A
groove was then cut in the raceway of the inner race, using a
small grinding stone, and the bearing was reassembled. The OR
fault was created by removing the cage, pushing all the balls to
one side, and then inserting a small grinding stone which cre-
ated the outer race fault, and cutting a small groove in the outer
raceway. The RE fault was induced by using an electrical etcher
to mark the surface of one of the balls, simulating corrosion.
The CA fault was simply created by removing the plastic cage
from one of the bearings, cutting away a section of the cage, so
that two of the balls were free to move, and not held at a regular
spacing, as would normally be the case.

A. Data Acquisition

In order to simulate commonly occurring faults in rotating
machinery, experimental data was collected from a test rig
(Fig. 2), which consisted of a dc motor driving the shaft
through a flexible coupling, with the shaft supported by two
plummer bearing blocks. The damaged bearings were inserted
into one of the plummer blocks, and the resultant vibrations
in the horizontal and vertical planes were measured using
two accelerometers. The output from the accelerometers were
sampled at a rate of 24 kHz, giving a slight over-sampling of
the data.

B. Time Domain Characteristics

By examining the actual vibration plots on a time series basis
(Fig. 3), some characteristics can be found. First, signals from
four conditions, including NO, NW, CA, and OR, look similar
with amplitude not exceeding , while the other two con-
ditions have periodic strong pulsations. These two groups can
be easily differentiated by examining the amplitude. The two
normal conditions look similar, though the signal from the worn
condition is a bit noisier than that from a brand new bearing.
The outer race fault and cage fault display little difference to the
normal condition in terms of magnitude and noise level. There-
fore, it will be difficult to identify these conditions solely by
time series inspections.

C. Experimental Datasets

Experimental datasets were formed by running the machine
(Fig. 2) over a series of sixteen different speeds and taking ten
examples of data at each speed. Each example consists of 2000
data samples. This gives a total of 160 examples of each condi-
tion and a total of 960 raw data examples over six conditions to
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Fig. 2. Machine test rig used in experiments.

Fig. 3. Typical vibration signals for six conditions.

work with. The full input dataset creates a 960 2000 matrix
as the training dataset. The other two 960 2000 matrices are
the validation dataset and the test dataset, respectively. For each
given vector in the input raw vibration datasets, a corresponding
vector was created in a matrix containing the target information
used during the experiment.

III. TRADITIONAL FEATURE EXTRACTION METHODS

Feature extraction is an important task in pattern recognition
and classification problems, especially for MCM, where only
well-chosen features provide discrimination information, and
thus, can help identify subtle changes in the machine condition.
Traditionally, to obtain an accurate measure of the condition,
machine vibration signals are recorded and transformed into

some indicator, which may be a measure of the energy, or the
magnitude of a particular frequency due to a fault. This process
is called the feature extraction. After evaluation and compar-
ison, useful features are picked out for the further classification
of different conditions. In this section, conventional features and
a list of possibly useful features are described in detail.

A. Conventional Measures

A number of statistically-based performance indicators exist,
which provide single figure assessments of the condition of
rolling element bearings. These give an indication of whether
a bearing is in a state of distress, or within normal operating
parameters, and show the degree of distress that a bearing is
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under. Conventionally, three most common measurements used
are shock pulse (SP), crest factor (CF), and kurtosis [14].

The SP method is a signal processing technique used to
measure impact and noise caused by metal to metal contact in
the bearing. It is much more refined than other high frequency
measurements. Shock pulse analysis relies on a specialized
transducer, which has a resonant frequency of 32–36 kHz. The
amplitude of the SP is relative to the velocity of the impact.
For bearing conditions, carpet value and max value are two
readings of the SP, and thus can be used as two components
of four conventional features.

1) Carpet Value: Metal impacting on metal always occurs
in rolling element bearings, even a brand new bearing under
normal operating conditions. When there is no damage within
the bearing, the metal-to-metal contact creates a background
noise of SP. This is referred to as the carpet value. Carpet value
decreases when the bearing is well lubricated. When damage
occurs to the bearing there will be more metal to metal contact,
which is reflected by an increasing carpet value. By examining
the carpet values in the signal, information can be gleaned about
the likelihood of the existence of a defect.

2) Max Value: Max value is another conventional parameter
to identify the damage in the rolling element bearings. How-
ever, it is not capable of distinguishing different fault condi-
tions of bearings. When a fault occurs within a bearing element,
the rolling elements strike the defect periodically. These create
a high amplitude SP. The max value increases as the bearing
damage develops further. This peak from the carpet of back-
ground shock signals can be used to detect the damage in appli-
cations of bearing condition monitoring.

3) Crest Factor: The crest factor (CF) is a commonly used
measure for the detection of bearing faults. CF is equal to the
peak amplitude of the waveform divided by the root mean
square (RMS) value. The analysis of the CF can give an idea
of how much impacting is occurring in time domain. The
impacting is associated with the rolling bearings. The CF is
relatively high due to the amount of the impact occurring within
the bearing and it works well while the fault is developing.
However, as the degree of damage goes up, the high frequency
component of a vibration signal increases. Hence, the RMS
value increases with the result that the CF value decreases.
Generally, the CF is trended over time to see whether the
amount of the impacting is decreasing or not.

4) Kurtosis: Kurtosis is a time-domain analysis technique.
It is commonly used as a measure of damage. The definition of
kurtosis is given by

(1)

where represents a vibration sample, is the total number of
samples, is the average of vibration samples, and is their
standard deviation. The kurtosis value emphasises the length of
the “tails” of a distribution. Signals show a lot of sharp impacts
when the rolling elements of a bearing strike a defect, the value
of kurtosis will be high. The kurtosis value will be low while
signals have little or no spike content.

B. Plain Statistics

It is well known that vibration signals depend mainly on the
resonant frequencies of different parts of the machine. If the
machine condition varies due to wear or damage, the resonant
frequencies, and hence, the vibrations, will change. Also, it is
generally not possible to classify the condition based upon an
individual sample of the vibration, thus, some transformation
of the recorded vibration time-series is required to extract time-
invariant features. These are statistical moments and cumulants.
For example, as the machine’s condition deteriorates, the en-
ergy (mean square value) in the vibration signal is expected to
increase. A number of different statistical features were gener-
ated using moments and cumulants of the vibration data. The

th-order moment is defined by (2). The four statistical features
used here are the four (first to fourth order) moments. These are
stored in a matrix of size 4 960.

(2)

for , and .

C. Signal Difference and Sums

Differences highlight the high-frequency components in the
signal, and the sums of the signal emphasise the low-frequency
portions. The numerical derivative of each vibration signal
was calculated by (3). The four plain statistical features were
calculated from the derivatives. The results were saved in
another 4 960 matrix. The numerical integral of vibration
signal were given by (4). In the same way, this creates another
4 960 matrix.

(3)

(4)

D. High and Low Filtering

The four statistical features were calculated on data filtered
using an eighth-order Butterworth IIR high pass filter with a
cut-off frequency of 129 Hz; this gave another 4 960 matrix.
A low-pass filter with the same cut-off frequency was used on
the same datasets, and gave a 4 960 matrix.

E. Normalization

The importance of normalization to both the efficiency and
accuracy has been demonstrated [26]. The normalization in ex-
periments is based on (5)

(5)

where is the mean value of the feature vector and is
the standard deviation of the feature vector .

IV. GP-BASED FEATURE GENERATION MODEL

In this paper, GP, as a form of evolutionary algorithm and
an extension of genetic algorithms, is proposed as the primary
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method for the feature extraction/generation. The major differ-
ence between the GP and GA approaches lies in the way that
each algorithm solves the problem under consideration. With a
GA-based solution, the basic form of the solution is predefined;
the GA is able to optimize parameters of the solution, however
not the actual structure of the solution. GP by comparison has
control over both the structure and the parameters of the solu-
tion to the problem.

Fig. 4 illustrates the system proposed in this paper. The block
with a bold frame is the feature generator, which extracts the in-
formation from the raw vibration data to create features, based
on the evolutionary algorithm. The surviving features from the
feature generator are used as the inputs to the multilayer percep-
tron (MLP) for the classification of the six bearing conditions.
Of course, some other classifier can be used as an alternative.

A. Process of GP

Since the aim of bearing fault classification is to identify
different machine conditions from raw vibration signals accu-
rately, the GP-based feature extractor is used to extract useful
information from the raw vibration data in order to provide
discriminating input features for the classifiers. The purpose
of GP is to try to maximize the extra information content
in the sample of the raw vibration signal, and it implicitly
maximizes the separation between different conditions within
the data. The evolutionary process of GP-based feature gener-
ation system is illustrated in Fig. 5. First, an initial population
with a chosen number of individuals is generated on a random
basis, meaning that there is no human influence, or bias, in
the generation of original features. Raw bearing data recorded
from experimental machines are fed as the inputs to the initial
population. Each individual represents a transformation net-
work, which tries to transform raw data into information for
classification.

In terms of the usefulness of each individual for classifica-
tion, a fitness value is assigned to each individual by fitness
function. Therefore, the members with the best fitness values
survive from the current generation and will be chosen as the
origins of the next generation. In our design, only the elite will
survive the natural selection. This mechanism allows the fea-
ture to evolve in a direction toward the best classification per-
formance, thus achieving the automatic generation of features.
At the beginning of the next generation, three operations—re-
production, crossover, and mutation—are conducted to produce
new members based on the surviving member. If the termina-
tion criterion is met, the best solution is preserved.

B. Fitness Function

As one of the most important components of GP, the fit-
ness function can greatly affect the performance of the system.
A good fitness measure guarantees the improvement of solu-
tions by rating the performance of each member and giving the
stronger one a better chance of surviving. Traditionally, the clas-
sification results are used as the fitness value for multicategory
classification problem; however, the computational demands are
relatively high in training and validating a classifier for each
individual.

Fig. 4. Structure of the system.

Fig. 5. Evolutionary process of GP-based feature generation system.

The Fisher criterion is adopted for the solution of the fea-
ture extraction problem based on the maximization of inter-class
scatter over the intra-class scatter. In this paper, GP as a evolu-
tionary method is proposed to maximize the degree of difference
between two classes, analogous to the Fisher criterion, but in an
iterative process. The following expression as the fitness func-
tion for two classes is obtained based on the Fisher criterion

(6)

where represents the examples of bearing conditions, the nu-
merator denotes the distance between class and while the
denominator denotes the range of variance within class and .

Note that the -class Fisher criterion can be de-
composed into two-class Fisher criteria. In order
to solve the worst case in two-class, the fitness value is de-
fined to be predominantly determined by the minimum one of
two-class Fisher criteria, each of which measures the distribu-
tion of inter-class scatter over the classes intra-class scatter for
any two-class. Considering the overall distribution of classes,
the weighted mean of two-class Fisher criteria will contribute
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to the fitness function by selecting the best feature for classes.
In an n-dimensional space, the fitness measure is defined as

(7)

where denotes the vector, which consists of
two-class Fisher criteria among classes, and is an empir-
ical factor that accepts the contribution from mean value and at
the same time diminishes the effect of too large a mean value.
The purpose of taking the average is to take into account the
distribution of conditions rather than the worst-separated two
classes. Consequently, the feature with few large criteria values
but small minimum value cannot compete with average criteria
values but relatively large minimum value. On the other hand,
if the minimum values for two features are similar, the one
with the largest average of values will survive. Specifically,
is chosen equal to 0.001. Overall, the individual having high fit-
ness value means that difference between any two conditions,
even the closest classes, is large.

C. Primitive Operations

GP evolves tree individuals representing possible solutions
to the problem at hand. A population of such individuals is
randomly created and then evolved by probability of genetic
operations:

• Crossover: GP carries out a crossover operation to create
new individuals with a probability , which controls the
occurrence of the crossover throughout generations. Two
new individuals are generated by selecting compatible
nodes randomly from each parent and swapping them, as
illustrated in Fig. 6

• Mutation: The mutation operation is performed by the cre-
ation of a subtree at a randomly selected node with the
probability . First, for a given parent, there is an index
assigned to each node for identification. A random index
number is generated to indicate the place where mutation
will happen. The node is located, then the tree downstream
from this node is deleted and a new subtree is generated
from this node (Fig. 7), exactly in the same way as growing
initial population.

• Reproduction: The reproduction operation is performed
by copying individuals to the next population without any
change in terms of a certain probability .

All these three operations happen within one generation
based on three probabilities

(8)

D. Primitive Terminators

Terminators act as the interface between GP and the raw vi-
bration signal. They are required to collect fault-related infor-
mation as much as possible from the raw vibration data and to
provide inputs to the feature extractor.

In our GP-based feature extractor, the terminator set is con-
structed by computing the estimate of four statistical moments.

Fig. 6. Crossover operation.

Fig. 7. Mutation operation.

TABLE I
OPERATOR SETS FOR THE GP

(see Section III-B). The terminator receives the raw vibration
data as the input and returns a single scalar value.

E. Primitive Operators

One of the main building blocks of the GP is the operator
pool. The functions stored in the pool are mathematical, log-
ical, or probabilistic operators that perform an operation on one
or more inputs to give an output result. Table I lists the mathe-
matical functions used as operators in this paper.

Note that any invalid input to an operator will result in a false
flag being assigned to the fitness value in order to filter out in-
dividuals who cannot successfully complete the mathematical
transforms. This will effectively exclude them from further con-
sideration during the experiment.

F. Representation of Each Individual

Since expressions can be represented as trees ordered by
operator precedence, GP systems in this paper, evolve programs
using tree representation. Each member can be written as a
polynomial expression consisting of several nonlinear functions
up to a maximum specified depth. Using this function, each
individual in the population is a mathematical formula that
transforms the time series signals into a feature data. Formula

Root kurtosis shewness can be represented by
the Fig. 8.
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Fig. 8. Tree representation.

V. CLASSIFIERS

There are three possible ways of using classifiers.

• In the first case, raw vibration data can be used directly
as the inputs of the classifier. We leave it to the classi-
fiers for selection and extraction of information from the
raw data by enhancing discriminating features and dimin-
ishing interfering data during the learning process. This is
carried out by adjusting weights and the amount of data
processed by the classifier will be enormous. Therefore,
the useful information is difficult to maximize, while in-
terference cannot be eliminated entirely.

• In the second case, a much more popular and effective re-
alization, some useful features are prepared from the raw
data for the inputs to the classifier. Based on the physical
and mathematical analysis of the mechanism of rotating
machinery in faulty conditions, features are computed to
represent the fault information concealed within the raw
vibration data. Therefore, classifier has much less diffi-
culty than in the first realization.

• In the third case, rather than manual development, features
are computed through an evolutionary process in order to
avoid human negative influence and bias, and to conduct
the feature extraction from a much larger space.

Obviously, the later two realizations are more effective and
are examined and compared through a series of experiments in
this paper. To demonstrate the robustness of extracted features,
two classification algorithms are proposed, including artificial
neural networks (ANNs) and support vector machines (SVMs).

A. ANN

ANNs are probably one of the most common classifiers in
use today. This is mainly due to their ability to learn and identify
patterns in the source data. For machine condition monitoring,
where the training dataset is often sparse, and the classifier
has to generalize to a certain extent, ANN is an ideal solution
because of its nonlinearity, and many applications can be found
regarding bearing fault detection [27]–[29]. The multilayer
peceptron (MLP) is chosen here as the structure of the network
for its overall performance over other configurations. The MLP
used consists of one hidden layer and one output layer, with the
hidden layer having a logistic activation function and the output
layer using a linear activation function. For training procedure,
the back propagation algorithm with adaptive learning and

momentum is used. The learning algorithm is stopped when
the classification performance of the validation set starts to
diverge from that of the training set.

B. SVM

SVM, a new generation of learning algorithm based on
advances in statistical learning theory, has gained considerable
popularity recently in the field of machine learning. It can be
characterized as a supervised learning algorithm capable of
solving linear and nonlinear classification problems [30]–[32].
In this paper, a nonlinear SVM classifier with polynomial
kernel is employed for the classification task.

VI. RESULTS AND COMPARISON

A. Feature Extraction Results

Two examples of extracted features described in this section
are generated by GP with different stopping criteria.

1) Feature 1: Feature 1 was extracted by GP after evolving
1000 generations using the raw vibration data as the input. The
maximum tree depth was chosen as five. There is always a pos-
sibility that two GP-generated features in one population are
identical and this probability generally increases with the size of
the population. Consequently, the population size does not need
to be large for only four terminators and in this experiment is
chosen as 10 to avoid unnecessary computations. The total time
for computation is about five minutes for running 1000 genera-
tions. The extracted feature is given by

(9)

Fig. 9 shows the feature-processed data for six different
conditions. There are altogether 960 examples from the six
conditions, with 160 examples for each class. Evidently, class
IR, OR, and RE are well separated from each other, and from
classes NO, NW, and CA as well, meaning that three faulty
conditions—inner race fault, outer race fault and rolling ele-
ment fault—are easily distinguishable with this feature.

On the other hand, conditions NO and CA overlap, while both
of them are almost separated from NW. This implies that these
three conditions are not easy to separate and these may be con-
fused with each other to a large extent in the one-dimensional
feature space. During the status change from normal condition
to slightly worn condition in machine life, there is no significant
defect occurring in the components. The physical nature of the
bearing varies in a manner unnoticeable on visual inspection.

Also, it can be seen that the cage fault is confused with normal
conditions. This may be improved by incorporating more fea-
tures to solve the problem in multidimensional space and/or
new terminators, or operators, which have discriminating ability
especially for the cage fault.

2) Feature 2: Feature 2 was generated by GP after 10 000
generations with the population size of 14 and the maximum
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Fig. 9. Evolved feature 1.

Fig. 10. Evolved feature 2.

depth of 10. It took about one hour for computation. The formula
of the feature is given by

(10)

Fig. 10 demonstrates that conditions IR, OR, and RE are
well separated, although condition RE does not have as good
a separation as with feature 1, mainly due to the fitness
algorithm, which uses the smallest Fisher criterion value as
the fitness, which gives the feature with better discriminating
ability for closest classes, specifically condition NO, NW,
and CA, more chance to survive. This can also be seen as
a compensation among all classes in order to give the best
overall performance. Clearly, classes NO (example 1–160)
and NW (example 161–320) are better separated than with
feature 1.

Overall, the GP-based feature extractor performed very well
by separating different classes without any explicit knowledge
of the statistical distribution of the data.
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B. Classification Results

A number of experiments were carried out to evaluate the
discriminating ability of features generated by GP and other
classical feature extraction methods in term of classification
performance, using ANN and SVM classifiers, respectively. The
first set of results (Table II) were obtained from the combination
of two GP-generated features and an MLP with one hidden
layer. The second set of results (Table III) are achieved from
combinations of each of 2, 3, 4, and 5 GP-generated features
and an MLP with one hidden layer of each of 3–14 neurons.
Table V presents the comparison results of classification success
rate using GP generated features and original features. Finally,
the classification performance using ANN and SVM with the
non-normalized feature sets and normalized feature sets as the
inputs are presented in Tables VI and VII.

1) Classification Result Using Two GP Extracted Fea-
tures: Table II shows the confusion matrix of the classification
performance for six conditions, using only two features ex-
tracted by GP. Each row of this Table shows the associated
classifications results made by the MLP for a given condition.
Each entry in the row shows what the perceived classification
are, expressed as a percentage of the total number of cases for
the condition. From Table II, it can be observed that condition
IR, OR, and RE manage to achieve 100% accuracy, condition
NW and CA achieving 95.6%. 10% of samples from normal
condition are misclassified with the condition CA. It is also very
clear from the Figs. 9 and 10, that most of the misclassification
occur between classes NO and CA.

2) Classification Result Using Different Number of GP Ex-
tracted Features and Neurons: Table III shows the percentage
of classification success for six bearing conditions with MLP,
which consists of one hidden layer with neuron number from
3–14, using GP extracted features from 2 to 5. It is clear that
the GP/ANN classification success rate is always more than
95%, with the lowest being 95% (for eight neurons with two
features or eight neurons with three features) and the highest
being 96.7% (for 14 neurons and five features). It can be seen
that using the GP generated features the classification results
are robust with respect to the choice of the number of neurons.
The classification performance improvement by increasing the
number of neurons is fairly small, ranging from 0.9% to 1.3%
for each feature set.

The correlation coefficients of five GP extracted features are
given in Table IV. It can be seen that all absolute values of coeffi-
cients involving feature 1 are 0.4 or less. Features 2–5 are fairly
correlated, sometimes positively and sometimes negatively. Yet,
the classification results obtained using two to five GP extracted
features essentially do not vary with the number of neurons in
the MLP (see Table III).

3) Classification Result Using ANN With the GP Generated
Features and Four Plain Statistical Features: The percentages
of correct classification are listed in Table V for the comparison
of performance between four normalized statistical features and
GP-extracted features with the variation of number of neurons
used in the MLP hidden layer. The classification success rate
(%) of GP/ANN is obtained by averaging over experiments
using 2, 3, 4, and 5 GP-generated features. The classification
success rate using GP-extracted features is higher than those
using four plain statistical features, with improvements ranging

TABLE II
CLASSIFICATION PERFORMANCE (%) FOR GP/ANN, USING TWO FEATURES

EXTRACTED BY GP AND 12 NEURONS IN ANN

TABLE III
CLASSIFICATION SUCCESS (%) WITH THREE TO 14 NEURONS

IN ONE HIDDEN LAYER OF ANN, USING TWO TO FIVE DIFFERENT

FEATURES EXTRACTED BY GP

TABLE IV
CORRELATION COEFFICIENTS OF FIVE FEATURES EXTRACTED BY GP

from 1.9% in the case using 13 neurons to 17.4% in the
case using three neurons. It is interesting to see that the
increase in the number of neurons does not seem to help
the classification much in cases using GP-extracted features
while original features require more neurons to achieve better
performance, with only a 78.4% success for one neuron and
a maximum 94.3% success when using 13 neurons. However,
only 79.4% classification success is obtained when 14 neurons
are used. It should be noted that the data of four plain statistical
features were normalized (see Table V) to help improve the
classification accuracy; however, the GP results in this paper
are based on unnormalized data and without the benefit of
normalization enjoyed by the classifiers.

4) Comparison of Features Generated by GP and Classical
Methods: The classification performance results displayed in
Table VI were obtained using features generated by GP and clas-
sical methods. Both ANN and SVM classifiers are utilized in
order to see the capability of different feature sets over different
classification algorithms. In this experiment, features are di-
rectly used as the inputs to classifiers without normalization. As
listed in Table VI, among classical methods, conventional fea-
tures achieve the best classification performance for both ANN
classifier with success rate at 91.5% and SVM classifier with
success rate at 92%. The four low-pass filter features perform
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TABLE V
CLASSIFICATION SUCCESS (%) WITH THREE TO 14 NEURONS

IN ONE HIDDEN LAYER OF ANN, USING TWO TO FIVE DIFFERENT

FEATURES EXTRACTED BY GP

TABLE VI
CLASSIFICATION SUCCESS USING THE ANN AND SVM CLASSIFIERS WITH THE

UN-NORMALISED DIFFERENT TYPE FEATURES

the worst with around 16.7% success in SVM classifier, which
is mainly due to large variation in values in the unnormalized
data. This may be addressed by using the ideas in [32]. When GP
extracted features are used, the improvement is overwhelming
in either ANN or SVM classifier. Overall, GP produces much
more robust features for classifiers and has the ability to perform
well without normalizing the data.

With normalized data, this experiment examines the classi-
fication performance in each scenario by the same feature ex-
traction methods used in the proceeding experiment. As shown
in Table VII, each scenario sees an improvement in classifica-
tion performance, ranging from 0.6% to 68.9%, compared with
those using un-normalized data. Evidently, the most significant
enhancement occurs in the case of low pass filter features with
SVM as the classifier, though this is mainly due to the normal-
ization. For the same reason, two classifiers have much less dif-
ference in classification performance compared with those in the
last experiment.

Summarizing the results from these two experiments, it can
be said that when classical feature extraction methods are em-
ployed, the classification performance changes drastically with
the variation of classification method and data, while GP-ex-
tracted features maintain a constantly high level of performance.
The superior performance of GP against other methods is clearly
demonstrated through the overall classification success.

VII. DISCUSSION

Based upon the experimental results, it can be said that using
features generated by GP, both the ANN and SVM classifiers

TABLE VII
CLASSIFICATION SUCCESS (%) USING THE ANN AND SVM CLASSIFIERS WITH

THE NORMALIZED DIFFERENT TYPE FEATURES

see a significant improvement in classification accuracy and ro-
bustness, compared with those using classically developed fea-
tures. GP derives feature selection from GA, but the available
feature space in GP is much larger than that in GA. Rather than
the pure selection in GA, GP has been developed here to pro-
duce new features by choosing terminators and operators.

The computation cost of GP in the feature extraction process
is slightly larger than that using manual approaches. However,
GP requires less computation compared with GA for feature se-
lection and generation. GA/ANN [14] takes a couple of days
to work out a solution achieved by GP in only a few hours. The
proposed method requires comparatively less computation since
it does not involve wrapper type feature selection/extraction, in-
stead it is based on a Fisher criterion. GP also has the ability to
process the un-normalized datasets as the input, remove the sys-
tematic variation and bring the raw data onto the same ground
for a fair comparison.

VIII. CONCLUSION AND FURTHER WORK

In this paper, a GP-based feature extractor is proposed for
the generation/extraction of features from the raw vibration data
for classification applied to the problem of bearing fault classi-
fication. GP is a powerful and efficient tool for the automatic
feature generation directly from the raw data. Using features
extracted by GP, the ANN and SVM classifier sees a signifi-
cant improvement in classification results, compared with those
using extracted features by classical methods.

It is also shown from the extraction results that GP is not only
capable of enhancing the classification performance, but also re-
ducing the dimensionality to describe the problem. Furthermore
classification performance obtained from GP extracted features
are very robust. Also, GP produces results in a tree representa-
tion, which allows an understanding of how it works.

So far only four statistical terminators and a few operators
have been used in this paper in an attempt to examine the feasi-
bility of the current scheme. In the next stage, it is necessary to
implement more terminators and operators in order to increase
the feature searching space, so as to give better discriminating
performance and a more useful realization.
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