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Abstract 

In electromagnetics, optimization problems generally require high computational resources and involve a large number of 
unknowns. They are usually characterized by non-convex functionals and continuous spaces suitable for strategies based on 
Differential Evolution (DE). In such a framework, this paper is aimed at presenting an overview of Differential Evolution-based 
approaches used in electromagnetics, pointing out novelties and customizations with respect to other fields of application. 
Starting from a general description of the evolutionary mechanism of Differential Evolution, Differential Evolution-based 
techniques for electromagnetic optimization 'are presented. Some hints on the convergence properties and the sensitivity to 
control parameters are also given. Finally, a comprehensive coverage of different Differential Evolution formulations in solving 
optimization problems in the area of computational electromagnetics is presented, focusing on antenna synthesis and inverse 
scattering. 

Keywords: Differential evolution; optimization methods; antenna arrays; antennas; inverse problems; electromagnetic 
scattering inverse problems 

1. Introduction 

In the last decades, the introduction and use of stochastic-based 
optimization algorithms has had a non-negligible impact on 

several areas of research. It has also contributed to the develop­
ment of new applications and industrial processes. Among such 
algorithms, evolutionary algorithms (EAs) have received the wid­
est diffusion because of their attractive features as global optimiz­
ers [1-5]. As a matter of fact, they have been shown to effectively 
deal with complex functionals, despite their simple implementation 
and use [6], thanks to the reduced number of control parameters to 
be set. Furthermore, the main drawback (i .e. ,  the convergence rate) 
l imiting their applicabi l ity has been further mitigated by exploiting 
their paral lelism, thanks to modem personal computers and clus­
ters . 

The Differential Evolution (DE) algorithm was first proposed 
by Stom and Price [7] as a population-based evolutionary algo­
rithm for the optimization of continuous variables in multi-dimen­
sional spaces. Like genetic algorithms (GAs) [8], Differential 
Evolution is modeled on the competitive mechanisms of natural 
selection and genetic pressure studied by Darwin, and successively 
adapted to the solution of artificial problems by Holland [9]. The 
evolutionary mechanism of Differential Evolution exploits the 
same evolutionary operators as genetic algorithms, but they are 
executed in a different order. More specifically, mutation and 
crossover modify the parameter vectors before selection and not 
vice versa, as for genetic algorithms.  Accordingly, the "destruc­
tive" effect of mutation in genetic algorithms is avoided, since it is 
performed at the beginning of each generation loop and not at the 
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end. Moreover, both the best and the average fitness values 
increase/decrease monotonically (without the need of ad hoc 
operators, namely, elitism) since the competition between parents 
and children (i .e. ,  the selection) takes place after crossover. Fur­
thermore, an effective sampling of the solution space is also 
insured, since the whole population of trial solutions is used as the 
mating pool, without giving advantage to the fittest individuals, 
and the mutant vectors are generated by using other individuals 
randomly chosen from the population. 

Although much attention has been devoted to other 
evolutionary algorithms (e.g. ,  the real-coded genetic algorithm 
(RGA) [10-13] or the Particle Swarm Optimizer (PSO) [14-18]) to 
deal with the optimization of floating-point parameters, more 
recently Differential Evolution has been effectively used, as con­
firmed by the increasing growth in various research papers with 
regard to Differential Evolution (Figure 1) and to Differential 
Evolution in electromagnetics (Figure 2). 

This paper presents a survey of Differential Evolution as 
applied to the solution of electromagnetic problems, as has been 
done for the genetic algorithm [19, 20] and the Particle Swarm 
Optimizer [21], to give a comprehensive report of the latest pro­
gress in this  field. The outl ine of the paper is as follows. A simple 
and standard version of Differential Evolution is described in Sec­
tion 2. However, since electromagnetic optimization generally 
involves a large set of parameters and high computational 
resources, customized versions of Differential Evolution are care­
fully reviewed (Section 2.2). Some hints on the mathematical 
issues and some guidelines for the choice of the control parameters 
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in electromagnetic applications are given in Section 3 .  Section 4 
presents a comprehensive overview of the application of Differen­
tial Evolution in electromagnetics, ranging from the synthesis of 
antenna elements and arrays (Section 4. 1 )  and the solution of 
inverse-scattering problems (Section 4.2) up to the design of 
microwave components (Section 4.3). Eventually, some conclu­
sions are drawn (Section 5 ). 

2. Differential Evolution Strategy 

Differential Evolution is aimed at evolving a population of S 
trial solutions to achieve the optimal (global) solution of the opti­
mization problem at hand. Each individual is  identified by a chro­
mosome that codes a set of unknowns descriptive of the problem 
solution. Let us consider the optimization of N real-coded parame-

ters, xn' n = I, ... , N , within a search space with lower (i.e., x;;in, 
n = I, ... , N )  and/or upper bounds (i.e.,  x;;ax, n = I, ... , N ). The 

exploration of the solution space can also be subjected to addi­
tional constraints, mathematical ly expressed through either equali­

ties, i;(!) = 0, i = 1 ,  . . .  ,1 , or inequal ities, Ij (!):S 0, j = I, ... ,J . 
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Figure 1. The number of Differential-Evolution-related papers 
published each year in all research fields (based on IEEE/IEE 
databases). 
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Figure 2. The number of Differential-Evolution-related papers 
published each year in electro magnetics (based on IEEEIIEE 

databases). 
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Figure 3. A conventional Differential Evolution flowchart. 

The cost functional to be optimized can be represented by a single 

function, \f' (!), or by more functions, \f'1 (!), t = 1 , 2, . . .  , T , as in 

multi-objective optimization [22]. 

The iterative procedure implemented by Differential Evolu­

tion is shown in Figure 3. At initial ization, the trial solutions, EO), 
s = I, . . .  , S , are usually chosen by sampl ing the parameter space 
with a uniform probabi lity according to the relationship 

xn,s =r(n,s)x:'� +[I-r(n,s)Jx:.�n [23]. r(n,s) is  a stochastic 

variable uniformly distributed within r E [0, I] and varying with 

the indices nand s, or is stochastically generated around a guessed 
solution with a normal distribution [24, 25]. As far as the repro­
duction loop of Differential Evolution is concerned, both conven­
tional and modified versions of Differential Evolution have been 
used when deal ing with electromagnetics. 

2.1 Conventional Differential Evolution 

In Differential Evolution, new solutions are basically gener­
ated by adding weighted real vectors (i.e., di fferential variations), 
computed as the difference from couples of other individuals taken 
from the population [7]. The new solutions (i.e.,  the children) are 
maintained in the successive population if they outperform the cor­
responding parents (i .e. ,  if their fitness is better). More specifical ly, 
the reproduction l oop is performed in classic Differential Evol ution 
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as shown in Figure 3. The genetic operators are executed in the 
following order: first mutation, then crossover, and finally selec­
tion. 

The main novelty of Differential Evolution with respect to 
genetic algorithms is mutation. For each individual of the kth cur-

rent population, �k), s = I, ... , S , k being the iteration index, a 

mutant vector, r.?) , is generated as follows: 

V(k) = x(k) + F""[x(k) - x(k) ] s = I S 
..:..s � L.J -Pl' IV ' , 

... , , 
y . . (I) 

where y is the number of differential variations, and a, Py, and 

r y can assume either the index of the best solution or be randomly 

chosen from the population (Py *- ry)' Moreover, F E (O , 2] is the 

scaling factor. The vectors �k) and i:rk) are referred to as the pri­

mary parent and secondary parent, respectively. �X? and ��) are 

called donor vectors. 

It is simple to note (Equation (I )) that the differential varia­
tions define the "direction" of the mutation within the solution 
space, while the search step is properly scaled/amplified by F. As a 
result, the differential mutation operates like a local search in those 
regions of the parameter space individualized by primary parents. 
The choice of the primary parents (e.g., a = s or a = best or 
a = random) therefore has non-negligible effects on the behav­
ior/evolution of the search procedure. Improved strategies, adapt­
ing the mutation strategy during the iterative process, have been 
proposed [26, 27] to combine both exploration and exploitation 
capabi I ities. 

As far as the crossover is concerned, it is applied to the pri­

mary parent, �k) , and to the mutant vector, Y1k) . In the literature, 

two different versions of crossover have mainly been used: the 
binomial crossover [28] and the exponential crossover [7]. The 
former operates as follows: 

1 

(k) 'f 
(k) 

_ vn,s I r < TlCR 
uns - , n=I, ... ,N, , x(k) otherwise n,s 

(2) 

where TlCR E (0, I] is an input parameter. Otherwise, the exponen­

tial crossover is based on a slightly different mechanism: 

1 

(k) ' fL l-
(k) 

_ Vn,s I I :5. n:5. � _ 
Un,s-

(k) 
. , n-I, .. . , N , 

xn
,
s otherwise 

(3) 

where LI, � are random integer numbers chosen in the range 

I:5.LI:5.�:5.N.  

The selection operator works deterministically, discarding the 

worst individual between �k) and �k) . In a minimization prob­

lem, it turns out that 
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1 

(k) if ,¥[�k) J :5. ,¥[�k)J 
�k+I) = � 

x(k) otherwise = 

(4) 

As a notation, the acronym DE / a / y / z {28] has been intro­

duced to identify Differential Evolution variants, where a, y, and 
z denote the choice of the secondary parent, the number of differ-. 
ential variations in Equation (I), and the crossover method, 
respecti vely. 

2.2 Modified Differential Evolution 
Approaches 

Optimization problems arising in electromagnetics generally 
involve a large number of parameters, and they are characterized 
by high dimensionality. Although Differential Evolution outper­
forms other evolutionary algorithms when dealing with a 
small/limited number of unknowns (e.g., genetic algorithms [29] or 
Particle Swarm Optimizer variants [ 1 8]), it has still shown low 
convergence properties or difficulties in achieving the global best 
solution [30-32]. To properly deal with these drawbacks or char­
acteristics, improved versions of Differential Evolution have been 
proposed. In the following, some representative examples are 
reported, and their innovative aspects are pointed out. 

2.2.1 Differential Evolution with 
Individuals in Group 

In [33], an innovative Differential-Evolution-based approach 
was proposed to deal with the reconstruction of multiple perfectly 
conducting objects: more specifically, the retrieval of their loca­
tions and contours, as well as their number. As expected, knowl­
edge of the number of cylinders lying within the investigation 
domain can greatly improve the efficiency of the inversion proce­
dure and can also guarantee more-accurate reconstructions [34], 
but this is not always a priori available. However, the Differential 
Evolution strategy with individuals in groups (GDES) considered 
in [33] proved its efficacy without such information. The popula­
tion of the Differential Evolution strategy with individuals in 
groups is partitioned into several groups, where the individuals of 
each group code the same number of cylinders. Mutation, cross­
over, and selection are independently applied to each group, since 
the length of the chromosomes (i.e., the number of unknowns) is 
different for each cluster. An additional operator, the group com­
petition operator, was then introduced to identi fy the correct num­
ber of cylinders. 

At the initialization (k = 0), the number of trial solutions of 

each group, S�O), g = I, ... , G , with G being the number of groups, 

is determined on the basis of the chromosome length of the corre­
sponding individuals [33], as follows: 

S(O) = 
2gS 

g G(G+I) 
(5) 

Successively, the dimensions of the groups are determined on the 
basis of the average fitness values of their members. To keep 
diversity among the individuals of the population, empirical 
thresholds have been considered. The group dimension is updated 
according to the following relationship: 
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ip(k-I) 
1- g 

G 
L ip�k-I) 

S(O) g= 1 S1k) = max 3'�
2 

,S-=-----=------=­
G-I 

(6) 

with ip�) being the average fitness value of the gth group at the 

kth iteration. 

2.2.2 Dynamic Differential Evolution 

To enhance the convergence properties and to improve the 
ability of the algorithm to quickly adapt itself  to the evolution of 
the optimization process, as wel l  as to the landscape of the cost 
function to be maximized/minimized, a dynamic Differential Evo­
lution (DDE) strategy was proposed in [35]. The newborn children 
compete immediately with the parent for the possibil ity to survive 
throughout the evolution . Moreover, the optimal solution is 
instantaneously updated whenever the fitness of a new individual 
is better than that of the current optimal solution. Although based 
on the DElbestlllbin approach, the evolutionary mechanism of the 
dynamic Differential Evolution strategy [35] differs from that of 
the conventional Differential Evolution, as detai led in Figure 4: 

Step I -Mutation: A mutant vector is defined for the 
sth individual as 

(k) _ (k) [ (k) _ (k)] _ _ 
vn.s -xn.opt+ Fn xn•p xn•r , n-I,.,.,N,s-I,,..,S, 
(7) 

where Fn is a random number uniformly distributed in 

the range [0, I] and ,B, y E [I,S] with ,B '# Y '# s; 

Step 2 - Crossover: After mutation, the binomial cross­
over (Equation (2)) i s  used to generate a new child, 

u(k) . :os , 

Step 3 -Solution Update: A parent is replaced by the 

newborn child (i .e. ,  £k) = �k») if 

'1' [ �k)] < '1' [ £k)J 

Step 4 - Optimal Solution Update: The current optimal 

I ·  . I d (. (k) - (k») '
f so utlOn IS rep ace I.e., ;s.,pt -!!or I 

'I'[u(k)] < 'I'[x(k)] :::s =pt . 

It is worth noting that the concept of iteration seems to disappear 
from the evolution process of the dynamic Differential Evolution 
since the population is continuously updated any time a better 
solution is found, even though the control level sti l l  determines the 
convergence of the procedure whether the iteration index, k, 
exceeds a pre-determined threshold, K max . 
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2.2.3 Modified Differential Evolution 

In order to obtain a good balance between exploitation and 
exploration abi lity, a modified Differential Evolution (MDE) was 
proposed in [36] to solve l inear-array synthesis problems. On one 
hand, the convergence rate of the modified Differential Evolution 
has been enhanced by considering two modifications. First, the 

refinement mechanism for the best solution, t,;l, is  employed fol­

lowing the guidelines in [37]. The Fittest Individual Refinement 
(FIR) scheme with simplex crossover is adopted to generate more 

individuals belonging to the neighborhood of the optimal solution. 
Second and l ikewise for dynamic Differential Evolution [35], the 
new children are directly inserted into the current population if 
they outperform the corresponding parents. On the other hand, the 
modified Differential Evolution exploits a refreshing distribution 
operation to keep the diversity among the individuals of the popu­
lation, thus avoiding premature convergence and the possibility of 
being trapped into local optima of the functional at hand. After a 
fixed number of iterations, K fresh, the population is ranked 

according to the fitness values of the individuals, and the convec­
tional Differential Evolution operators are applied to the S/2 indi­

viduals having better fitness, whi le the remaining individuals are 
reinitial ized. 

Figure 4. A dynamic Differential Evolution flowchart. 
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2.2."4 Hybrid-Coded Differential Evolution 

In [3 8], a hybrid encoding of the unknown parameters was 
considered when dealing with the optimization of the difference 
pattern in monopuIse antenna arrays. In more detail, a chromosome 
characterized by a set of NI integer values and a set of N2 real 

values was optimized. To avoid coding and decoding operations, 
the crossover was properly customized to deal with the subset of 
NI integer parameters, also taking into account the fulfillment of 

the constraints of the antenna problem at hand: 

u(k) - ' 
n-I N (8) 

j

l 

v�kl + 0.5  J if r < l1CR 

n,s - l 

x��l + 0.5 J otherwise
' - , ... , I' 

where U identifies the integer part. 

Unlike the implementation in [3 8], a two-step hybrid proce­
dure was adopted in [24] to minimize the sidelobe level (SLL) in 
planar arrays. Towards this end, the problem was split into two 
simpler sub-problems, the first concerned with the optimization of 
real quantities (i.e., the inter-element spacing of the array), and the 
second one described with binary unknowns (i.e. ,  the on/off ele­
ments of the array on a grid). Differential Evolution is used in the 
first step, while the second step considers a binary genetic algo­
rithm. 

2.2.5Differential Evolution with 
Best-of-Random Differential Mutation 

Recently, an innovative mutation operator (i.e. ,  the best-of­
random (80R) mutation) was proposed in [39] to provide a good 
tradeoff between search ability and guidance during the optimiza­
tion process. The approach is similar to the DE/randiI/* version, 
but here the secondary parent is selected as the fittest individual 
among three solutions randomly picked up from the population and 
used to generate the mutant vector. The other two individuals are 
used as donor vectors . The best-of-random works as follows: 

(9) 

where 

(10) 

and a "#- P "#- r . It is worth noting that the best-of-random mutation 

schema does not require additional control parameters. 

2.2.6 Strategy Adaptation 

In order to adapt the strategy to learn from previous genera­
tions, two versions of Differential Evolution, namely the 
DElbestillbin and the DE/randillbin, were combined in [26]. The 
solution is looked for in a multi-minima functional by using the 
DElbestillbin to rapidly locate the attraction basin of a minimum. 
The DE/randilibin is successively applied to avoid the trial solu­
tion being trapped in a local minimum. 
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3. Theoretical Background and 
Control Parameters 

The efficiency of Differential Evolution has been proven in 
several problems [I8, 34]. However, comprehensive parametric 
studies have shown that the behavior of Differential Evolution is 
greatly affected by differential-mutation-based strategies [26], and 
is very sensitive to the values of the control parameters [40]. Such 
events, as wel l  as the difficulty to properly balance the exploration 
and exploitation of the method, have been confirmed by several 
works on this subject (see, for example, [40-45]) .  

On one hand, innovative operators exploiting geometrical 
relationships (e.g. ,  trigonometric mutation [46]) have been intro­
duced to improve the convergence speed. On the other, great care 
must be exercised to choose the control parameters of Differential 
Evolution. The crossover probability, l1CR ' and the amplification 

coefficient, F, have to be carefully determined to avoid premature 
convergence to sub-optimal solutions, as well  as slow convergence 
rates [28]. A basic rule  suggests adapting the search step of the 
perturbation vectors, taking into account the diversity among the 
individuals of the population. The control parameters should allow 
large perturbations at the beginning of the evolution process, while 
small perturbations must apply at the end of the process, in the 
region of the solution space close to the attraction basin of the 
global optimum. 

Since a general and useful (for whatever application) rule 
does not exist, some rules of thumb can be derived from the avail­
able literature [28, 40]. The dimension of the population should be 

chosen within SE [3xN,8xN] [29, 41, 47, 48]. The values sug­

gested for the scaling factor are 0.4 < F � I [47-49], and a good 
initial choice is F = 0.6 [41]. Values of the scaling factor larger 
than one (i.e., F > I) allow escaping from local minima, but they 
decrease the convergence rate. As far as the probability of cross­

over is concerned, a good choice is l1CR E [0.3, 0.9] [41, 47]. Lar-

ger values of l1CR often speed up convergence. 

4. Applications of Differential Evolution in 
Electromagnetics 

This section is devoted to giving a comprehensive overview, 
to the best of the authors ' knowledge, on the applications of Dif­
ferential Evolution strategies to a variety of electromagnetic prob­
lems. In the fol lowing, three main macro areas in electromagnetic 
applications are considered: antenna (single element and array) 
synthesis and design, electromagnetic inverse scattering, and opti­
mization of microwave components. For the sake of summary, 
Tables 1-3 also list the applications and related references dis­
cussed in the fol lowing. 

4.1 Antennas 

A large portion of the scientific literature on the application 
of Differential Evolution to antennas is concerned with the synthe­
sis of arrays. In such a framework, Differential Evolution has been 
used to minimize functionals aimed at evaluating the mismatch 

between the synthesized field, E((),,p,!.), and the 

desiredlreference field, Ere! ((),,p) [50, 5 1]: 
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Table la. A list of scientific publications on Differential 
Evolution as applied to antenna optimization. 

Antennas 

Objective Subiect DE Strate2Y Ref. 

SLL Linear array DElbestiI Ibin [50] 
Delbestll- [49] DE/randil/-

MDE [36] 
DElBoRlllbin [39] 

Planar array Hybrid DE-GA [24] 
- [531 

Reflectarray DElbestil/- [49] DE/randil/-
Thinned linear array DElbestiI Ibin [47] 

Conformal array D E/randl llbin [231 
TM linear array DElbestillbin [56] 

DElbestillbin [57] 
TM planar array DElbestiI Ibin [581 

DElbestillbin [591 
- [60] 

TM circular array DElbestillbin [61] 

Table lb. A list of scientific publications on Differential Evolution 
as applied to antenna optimization. 

Antennas 

Objective Subject DE Strate2Y Ref. 

SLL"Mooe Monopulse linear array Hybrid-coded DE [38] 
MDE 1361 

DirectivitydMode Monopulse linear array Hybrid-coded DE [551 
Pattern nulling Linear array DElbestiI Ibin [29] 

Planar array DElbestillbinwith [54] jitter 
Power pattern shaping TM Linear array DElbestiI Ibin [62] 

TM Semicircular array DElbestiI Ibin [631 
Footprint pattern TM Planar array DElbestillbin [641 

Pulse Doppler radar TM Linear array DElbestillbin [65] 
Multiple Patterns TM Linear array DElbestillbin J66] 

MC Compensation TM Linear Array D Elbestl1 Ibin [671 
Gain Spherical Luneberg lens - [68] 

Table 2. A list of scientific publications on Differential Evolution 
as applied to inverse scattering. 

Inverse Scatterif!g 

Material Objects DE Strate2Y Ref. 

PEC 2D Circular cylinders DElbesti1 Ibin [48] 
PEC 2D Elliptical cylinders DElbestillbin [701 
PEC 2D Cylinders DEibestiI Ibin [341 
PEC 2D Cylinders GDES [331 
PEC 2D Cylinders DDE [35] 
PEC 2D CyJinders DE/randillbin [181 

Dielectric ID Scatters DE/randi1 Ibin [721 
Dielectric 2D Buried structures DEirandi1 Ibin [73} 

Dielectric 2D Buried structures DElbestlll- [26] DE/randlll-
Conductors 3D Buried spheroidal scatterers - [741 
Conductors 3D Buried spheroidal scatterers GDES [751 
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Table 3. A list of scientific publications on Differential Evolution 
as applied to other electromagnetic topics. 

Other Electromagnetic Problems 

Optimization Subject DE Strategy Ref. 

Radial active magnetic bearings - [76] 
UWB radio - system pulses DE/rand/l/- [77] 

EIectromaRnetic property. of composite materials DElbestlilbin P81 
Microwave filters 

J:1f J:
12
IE( O,¢,:!)_Eref (O,¢)1

2 
d0d¢ 

J:1f J:1
2
IErif (O,¢)1

2 
dOd¢ 

(II) 

and the fulfillment of some pattern-performance criteria (e.g., 
sidelobe level, SLL; beamwidth, BW; and directivity, D) [23, 25, 
38]: 

p 
'I' 2 (:!) = L Wp 'I' p (:!), (12) 

p=1 

where 'I'�nt (:!) is related to the pth pattern feature and wp is a 
real and positive weighting coefficient. 

A classic optimization problem when dealing with antenna 
arrays is the minimization of the sidelobe level. In [50], the cases 
of symmetric linear arrays having 30 and 48 elements, respec­
tively, was treated. The definition of both element weights and 
positions was addressed by using cost functions similar to those in 
Equations ( I I) and (12), the latter aimed at achieving desired val­
ues of sidelobe level, bandwidth, and direction of the main beam. 
The control parameters of Differential Evolution were set to 
S = 5N , F = 0.6 , and 17cR = 0.9 . The optimization of 
N = { 15, 16, 23} real unknown parameters was performed in three 
different examples. Comparisons with a real-coded genetic algo­
rithm were provided to assess the enhanced convergence rate of 
Differential Evolution. 

The use of unequally spaced arrays has attracted great atten­
tion, since they achieve low sidelobe levels with a limited number 
of elements. Since the inter-element spacings are real quantities, 
Differential Evolution is intrinsically a suitable optimization tool 
for such synthesis problems [36, 39, 49]. Position-only and posi­
tion-phase symmetric linear arrays, having 31, 32, and 60 ele­
ments, were considered in [49]. The values of the Differential 
Evolution control parameters were chosen in the range 
0.5 � 17CR � 1 and 0.4 � F � I. As far as the computational 
resources were concerned, the simulation ran for K = 300 itera­
tions on an Intel Pentium-III PC with an 800 MHz processor. By 
considering S = 320 trial solutions, the simulation took about 43.7 
minutes. Position-phase synthesis of uniform-amplitude arrays was 
also dealt with in [36] with modified Differential Evolution. Com­
parisons with conventional Differential Evolution have shown that 
modified Differential Evolution allows one to obtain the same 
sidelobe values, but with a faster convergence rate. More specifi­
cally, the same example in [49] was analyzed with modified Dif­
ferential Evolution, and the number of cost-function evaluations 
was reduced by more than one-third, from 96000 iterations (i.e., 
K = 300 generations with a population of S = 320 individuals) 
down to 60000 iterations. More recently, the DDE/BoRlIlbin was 
also applied to this kind of problem, and an extensive set of 
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Multi-obiective DE [791 

numerical simulations was performed in [39]. The Differential 
Evolution parameters for the synthesis of a 32-element symmetric 
linear array were set to S = 60 , F = 0.4 , and 17CR = 0.7 . 

Other Differential Evolution implementations and strategies 
have been considered for the minimization of the sidelobe levels in 
planar arrays. The hybrid two-step approach [24] exploited Differ­
ential Evolution at the first step for optimiZing the inter-element 
distances of a sparse linear array used as a building block for a 
planar-array architecture. A binary genetic algorithm was then 
applied to thin the filled configuration (replicating the sparse linear 
array obtained through Differential Evolution) for minimizing the 
side lobe levels. As a representative test case, a 31-element linear 
array, symmetric with respect to the antenna's center, was opti­
mized (N = 15 ) with Differential Evolution by setting S = 100 and 
F = 0.5 (17CR = 1 ). 

Inspired by [52], where a genetic-algorithm-based optimiza­
tion tool was used, the rotation angles of the linearly polarized 
microstrip-patch antennas of an 8 x 8 planar array were determined 
by means of Differential Evolution to suppress the lobes outside 
the main-beam region [53]. 

Although the minimization of the sidelobe levels is some­
times enough to obtain suitable beam patterns for reducing the 
problems related to noise and interference, nulling is necessary in 
those cases where jammers or interference are characterized by 
high powers. In this framework, Differential Evolution has also 
provided good performance on a set of benchmark examples. More 
specifically, the optimization of the amplitude weights of a sym­
metric uniform linear array was dealt with in [29]. Differential 
Evolution (S = 5N, F = 0.6 , and 17cR = 0.9 ) showed distinct 
advantages compared to modified touring ant colony optimization 
(MT ACO) and the standard binary-coded genetic algorithm. The 
synthesis of planar arrays with prescribed nulls by means of posi­
tion-only and position-amplitude optimization was carried out in 
[54] by means of the DElbestillbin with jitter [45]. An additional 
term was added to the cost function to penalize the solutions char­
acterized by a minimum spacing between two adjacent elements 
below a fixed threshold. An example concerned with the optimiza­
tion of a 36-element array with S = 200 , F == 0.2 , and 17cR = 0.95 
was reported, as well. 

Besides the optimization problems reported above, Differen­
tial Evolution has been also used in many other situations within 
the framework of array synthesis. In [49], the element positions of 
unequally-spaced reflectarrays were optimized to minimize the 
sidelobe levels, while considering a constraint on the minimum 
distance required between two close elements. In contrast, the 
optimization of some pattern features (e.g., sidelobe levels and 
directivity) of the difference mode in monopulse radar arrays was 
carried out through Differential Evolution [36, 38, 55]. To generate 
a compromise difference pattern with a low side lobe level, an 
innovative hybrid real/integer-coded Differential Evolution was 
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proposed in [38], by optimizing the aggregation of the elements 
into Q subarrays (unknowns) and their weights. Examples of sym­
metric l inear arrays having 100 elements (i.e., N:: 54 with 50 
integer unknowns and Q:: 4 real unknowns) and 20 elements (i.e., 

N E [12,20] with IO integer unknowns and Q E [2, IO] real 

unknowns) were considered with a Differential Evolution imple­
mentation characterized by F:: 0.5 , 1]CR :: 0.7 , and K max :: 1000 . 
The same approach was successively extended to the optimization 
of the directivity [5 5]  by running a DE/rand/I/exp with S:: ION , 
FE [0.5,2], 1]CR :: 0.8  , and Kmax :: 2000. The mean computation 

time for each iteration when considering N:: 30 (20 integer 
unknowns and Q:: 10 real unknowns) was equal to 0.17 s on a 

1.5 GHz PC with 512 MB of RAM .  More recently, modified Dif­
ferential Evolution [36] has been applied to the benchmark 
problems in [38]. As expected, results that were improved - both 
in terms of cost-function minimization and convergence rate -
resulted, attesting to the efficiency and rel iabil ity of modified Dif­
ferential Evolution. 

In the last years, there has also been a growing interest in the 
synthesis of time-modulated (TM) arrays. In this framework, Yang 
and co-workers profitably applied Differential Evolution to several 
optimization problems. The joint minimization of the sidelobe lev­
els and of the power losses generated by the periodic on-off com­
mutations of the radio-frequency switches was considered. The 
static element (amplitude) excitations as well as the switch-on 
intervals were optimized in case of l inear arrays [56, 57], planar 
arrays having circular/almost-circular boundaries [58, 59] or hex­
agonal shapes [60], and circular arrays [61]. Moreover, power­
pattern synthesis problems, devoted to arbitrarily shaping the beam 
(e.g., a flat-top beam) in linear [62] as well as semicircular [63] 
time-modulated arrays were dealt with. In the latter case, both the 
amplitudes and phases of the complex static excitations were opti­
mized by means of Differential Evolution. The DElhestillhin was 
used to generate footprint patterns from time-modulated planar 
arrays [64], and to synthesize time-modulated l inear arrays suitable 
for airborne pulse-Doppler radars [65]. Moreover, effective Differ­
ential-Evolution-based procedures were proposed for generating 
multiple patterns [66], and to address mutual-coupl ing (MC) com­
pensation problems [67]. 

Other antenna problems where Differential Evolution has 
been effectively used as an optimization tool are the synthesis of a 
uniform-ampl itude thinned linear phased array [47], sidelobe 
minimization in conformal phased arrays [23], and the design of 
beamforming networks for scanned multibeam antenna arrays 
based on coherently radiating periodic structures [25]. 

Besides antenna arrays, single radiating elements have also 
been synthesized with Differential Evolution. A representative 
example is that discussed in [68], where a Luneberg lens antenna 
was designed by optimizing the focus distance, the size of the feed 
aperture, the layer thickness, and the dielectric constants of the 
shells.  

4.2 Inverse Scattering 

The rel iabil ity of Differential Evolution in dealing with 
multi-minima functionals, and the improved convergence rate as 
compared to genetic algorithms when appl ied to small-scale real­
valued problems, are the main motivations for its use in electro­
magnetic inverse scattering [69]. The reconstruction of both pene­
trable objects as wel l  as perfect electric conductors (PECs) has 
been carried out with Differential-Evolution-based approaches. In 
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the former case, the image of the region under test (cal led the 
investigation domain, Di) is obtained through the retrieval of the 

spatial distribution of the contrast function, !, model ing the elec­

tromagnetic properties ( i .e . ,  permittivity, permeabi l i ty, and con­
ductivity) of Di. To retrieve the unknown vector !, the fol lowing 

cost function, proportional to the mismatch between measured and 
reconstructed fields, is  minimized: 

where fiinc and fitot are the incident and total field vectors, 

respectively; fiscall � fitot - fiinc; and [GEXT] and [GlNT] are the 

external and internal Green's operators. Moreover, Ws and wD are 

real and positive regularization weights [69]. 

In contrast, only the external equation is processed during the 
optimization when deal ing with PECs, since the field is null within 
the objects. Therefore, 

(14) 

where the unknown parameter vector, l., describes the contours of 

the scatterers where the current, .f.., is present. 

In more detai l ,  Differential Evolution was first appl ied to 
PECs. In [48] and [70], the two-dimensional imaging of circular 
and elliptical cyl indrical conductors or tunnels was performed. The 

DElhestiI Ihin was used (Se[5N,ION], FE[OA,I], and 

1]CR E [0, I]) to obtain information about the positions and radius 

(i .e . ,  N:: 3) of circular cylinders in [48]. The same approach was 
extended to deal with ell iptical shapes in [70], solving a problem of 
dimension N:: 5 .  In order to reconstruct PECs with arbitrary 
shapes, the surfaces of the scatterers have been approximated with 
cubic B-spline functions [34]. Likewise [48], the same version of 
Differential Evolution was adopted to optimize the control points 
of the spline functions, and a popUlation of S:: 5N individuals 
was used with the following setup: F:: 0.7 and 1]CR :: 0.9. The 

approach was compared in [34] with the real-coded genetic algo­
rithm [71] on a set of benchmark examples. Moreover, the recon­
struction of real data was also considered. The main drawback of 
the approach in [34] was that the reconstruction results strongly 
depended on the knowledge of the number of objects (needed a 
priori) that are supposed to l ie in Di• The Differential Evolution 

strategy with individuals in groups [33] was proposed to overcome 
this problem. As expected, it significantly outperformed conven­
tional Differential Evolution [34], both in terms of convergence 
performance and reconstruction accuracy. To further improve the 
convergence rate, the use of the dynamic Differential Evolution 
(DOE) strategy was also investigated [35]. 

Recently, Differential Evolution has been compared with 
another evolutionary algorithm suitable for continuous optimiza­
tion (i.e., the Particle Swarm Optimizer) on a set of representative 
examples when applied to the reconstruction of PEC cylinders [18] 
and one-dimensional dielectric scatterers [72]. In both cases, the 
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Differential Evolution control parameters were set to F = 0.5 and 
71CR = 0.8 . 

The detection of two-dimensional buried inhomogeneities 
was carried out with conventional Differential Evolution in [73] , 
and with a Differential-Evolution-based adaptive strategy in [26]. 
The extension to three-dimensional problems was dealt with in 
[74] and [75] by discussing the detection of unexploded ordnance 
(UXO) and lossy spherical objects buried in the subsoil, respec­
tively. In this latter case, the Differential Evolution strategy with 
individuals in groups implementation was exploited by evolving in 
parallel multiple populations as in [33], and using a communica­
tion strategy between groups during the iterations. 

4.3 Other Optimization Problems 

Although the greatest part of the Differential Evolution litera­
ture is focused on optimization problems concerned with antenna 
synthesis and inverse scattering, Differential Evolution has been 
also applied to other topics in electromagnetics. 

In [76] , the optimization of radial active magnetic bearings 
was addressed. Dealing with ultra-wideband (UWB) radio systems, 
the DE/rand/l scheme was used in [77] to optimize the source 
pulses and detection templates. Moreover, the analysis of the 
effective electromagnetic properties of composite materials with 
aligned non-spherical inclusions was carried out in [78]. 

Recently, a multi-objective version of Differential Evolution 
was presented in [79] for the design of multilayer dielectric 
microwave filters. 

5. Conclusions 

In this paper, a review of Differential Evolution as applied to 
electromagnetics has been presented. Beyond conventional Differ­
ential Evolution, modified and customized Differential Evolution 
versions have been described, to point out the main similarities and 
differences among the various implementations. Some theoretical 
hints on the influence o.f the setting of the parameters on the con­
vergence behavior of the algorithm have been also given. The 
applicability of Differential-Evolution-based approaches to a broad 
class of optimization problems in electromagnetics has been illus­
trated by reporting, to the best of the authors' knowledge, the state­
of-the-art on the subject. 

Although it cannot be stated that Differential Evolution is 
better than other evolutionary algorithms (by virtue of the "no free 
lunch theorem " [80]), Differential Evolution generally outperforms 
other approaches dealing with small-scale optimization of continu­
ous variables. Moreover, it shares several advantages with other 
population-based stochastic procedures, namely, the possibility of 
introducing physical constraints or a priori knowledge about the 
problem at hand in a simple way, hill-climbing features allowing 
escaping from local minima, differentiation of the functional is not 
required, and easy integration with gradient-based optimization 
tools. 

As for optimization problems in e\ectromagnetics, although 
they are generally characterized by a large number of unknown 
parameters - therefore limiting the potential application of con-
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ventional evolutionary-algorithm-based approaches - some paral­
lel-processing architectures have been used to increase the com­
putational efficiency of Differential Evolution. In this framework, 
data-decomposition schemes were proposed in [81-83], where the 
population is split into smaller sub-populations (similarly to what 
is done in the Differential Evolution strategy with individuals in 
groups), and each group of individuals is assigned to a different 
processor node. Suitable information-exchange procedures are then 
implemented to allow communication between all individuals and 
to guide the evolution process. 

Differential Evolution therefore represents a reliable and 
effective alternative method to be carefully considered when 
approaching an optimization problem in e\ectromagnetics, espe­
cially when dealing with floating-point unknowns. However, it is 
also worth emphasizing the need for future and further mathemati­
cal investigations on Differential-Evolution properties, and on its 
behavior during its iterative search for the optimal solution. As a 
matter of fact, Differential Evolution is still in its infancy. Analyti­
cal proofs about the convergence would enhance its overall per­
formance, and also potentially reveal additional unexplored areas 
of application. 
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